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Abstract

This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure,
and optimum reaction wheel sizing. The first objective is confronted while determining propel/ant consumption by
the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum
accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the
spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other
off-normal to different extent at different times to the sun rays. The paper therefore first develops commands for the
arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom
and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both
arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an
orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel
configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum
requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally,
their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are
compared and contrasted.
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1. Introduction

This paper is concerned with: a) determination of
momentum accumulation due to solar radiation torque acting on
an earth-observing spacecraft with sun-pointing solar arrays, and
b) reaction wheel sizing and its pyramid configuration
optimization for maximum momentum storage and minimum
power consumption. These topics are classical; yet it seems
there is no single reference in the published literature that treats
this subject with sufficient comprehensiveness so that a control
engineer, confronting this task, could accurately size the
reaction wheels, select a wheel configuration, and estimate
yearly propellant consumption for momentum dumping, all
without extensive or expensive computer simulation. This
paper, hopefully, fulfills that need. The contents of the paper
and related previous contributions known to this author are
summarized below.

Solar arrays' influence on spacecraft configuration, attitude
control system, and mission operation is so far-reaching that a
brief elaboration of this topic appears in order. For an earth-
pointing three-axis stabilized spacecraft rotating once per orbit
about the orbit normal, an attached solar array must at least
have one relative rotational degree of freedom about the orbit
normal so that the array can be held inertially fixed and sun-
pointing. Although economical, this arrangement becomes
inadequate if the spacecraft's life span is more than several (say,
six) months, because in this duration the earth moves around
the sun in the ecliptic plane so much that the sun-rays deviate
significantly away from the array normal and therefore a
considerable power loss begins to occur. Consequently, for
spacecraft with one year or longer life span, the solar array is
accorded a second degree of freedom in the form of spacecraft
yaw rotation. If the spacecraft at hand has only one solar array,
this yaw rotation is of 180 degrees and may take place once in
six months when the off-normality between the sun-rays and the
array on one side of the orbit plane exceeds limits. The 180-
degree rotation takes the solar array to the other side of the orbit
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plane where the off-normality in the following six months will
be smaller. Although to minimize cost and to gain simplicity,
there are many spacecraft with one solar array (TOPEX for
example), this configuration is asymmetric and might generate
significant disturbance torques on the spacecraft arising from
solar radiation pressure, gravity gradient, atmospheric drag, and
thermal shocks at each sun-rise and sun-set; savings are
therefore somewhat offset by stronger control torque
requirements. To eliminate this asymmetry and/or to generate
enough power for on-orbit needs, two solar arrays, one on each
side of the orbit normal, are sometimes employed. Then, instead
of once in six months, a yaw rotation from zero to 2_ or from
-re/2 to +nf2 takes place as continuously as one about the orbit
normal. The corresponding sun-tracking commands were derived
by McElvain (1961) 1 and Kalweit (1983) 2. GPS satellites have
opted for this approach. Although TOPEX satellite has one
solar array, it also employs continuous yaw rotation instead of
180 ° yaw rotation. Some missions are not interfered with by
these persistent yaw rotations, but others are. For these latter
situations, Kalweit 2 has determined best-fit minimum-power-
loss, average yaw angles, constant over each half orbit.
Nonetheless, persistent yaw rotation of a spacecraft is
cumbersome because the torque and momentum capacity of the
reaction wheels, usually employed for attitude control, must
now accommodate the yaw rotation. A superior alternative
appears to be, at least on the basis of technical merits if not
cost, to bestow each array with two rotational degrees of
freedom relative to the spacecraft, one about the orbit normal
and the other about an axis in the orbit plane. Such is the
spacecraft configuration considered in this paper; that is, a
spacecraft with two solar arrays, arranged symmetrically on each
side of the orbit normal and each array having two articulation
degrees of freedom. Section 2 of the paper furnishes sun-
tracking commands about the two just-mentioned axes. Explicit
relationship is furnished between the so-called beta angle (also
called flap angle) of the array and parameters such as earth's
position in the ecliptic plane, the angle between the ecliptic and
the equator planes, inclination of the spacecraft orbit, and its
ascending node angle.
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Turningourattentiontosolarradiationtorqueon a space
vehicle, this arises from arrays as well as the vehicle bus.
Moreover, of the two arrays, one may be normal to the sun
while the other may be_off-normal (thermal requirements may
dictate so), and the bus and the arrays may cast shadow on each
other at different times, changing the lit area, center of pressure,

and moment arm from the vehicle mass center to the ]_ressure
center; see an example of shadowing in Evans (1964) _. These
complex effects are formulated and illustrated in Section 3. For
typical spacecraft however, the torque contribution of the bus
and the shadow effects are secondary; so by ignoring them,
simple radiation torque expressions for arrays normal as well as
off-normal to the sun are obtained which are used in Section 4

to determine secular and cyclic momentum accumulation in the
roll-yaw plane and about the pitch axis. Because of significant
variation in the array's flap angle over a year, the corresponding
momentum accumulation over each orbit changes considerably,
particularly if the array is positioned off-normal to the sun. A
simple expression of annual, secular momentum accumulation
is therefore developed and illustrated in Section 4, and its
dependence on the orbit inclination is investigated. From this
result, yearly propellant consumption for momentum dumping
is determined easily. DeBra and Cannon (1961) 4 have also
performed preliminary analysis along these lines.

Section 5 of the paper is concerned with sizing reaction
wheels and optimizing their pyramid configuration, keeping
cost and redundancy in mind. Four-, six-, and three-wheel
configurations with and without one wheel failure are
considered. Optimum cant angles for these pyramid
configurations for minimum power consumption and for given
ratios between the roll, pitch, and yaw torque requirements are
determined. Simple relationships are developed relating
momentum or torque requirements about spacecraft axes to
those about the wheel axes for all configurations with and
without one wheel failure. These relationships then provide the
required momentum and torque capacities of the wheels. The
paper is finally concluded in Section 6.

2. Commands for Sun.Tracking
Coordinate Transformations

In order to express sun-ray direction from the sun to the
Earth in terms of solar arrays' frames, and to develop pointing
commands for the arrays for tracking the sun,the following
angles, all anticlockwise positive unless stated otherwise, are
introduced. The angle v, measured from the the first day of
autumn (September 23), denotes the earth's rotation around the
sun in the ecliptic plane. The clockwise positive angle _. ( =
23.44 degrees) about the Vernal Equinox is the angle between
the ecliptic and the equatorial plane. The angle f2N and i are,
respectively, the usual ascending node angle of the spacecraft
orbit in the equatorial plane and the orbit inclination angle from
the equatorial plane. In this paper we will be concerned
exclusively with circular spacecraft orbit. The local-vertical-
local-horizontal (LVLH) frame _-c: Xc Yc Zc at any point in

the orbit locates the spacecraft mass center with X c along the

velocity vector of the spacecraft, Zc along the local vertical
from spacecraft to the earth, and Yc opposite to the orbit
normal. To maintain the earth-pointing attitude, the spacecraft
rotates clockwise about Yc-axis at the rate -0_0 (coO thus is a
positive quantity and it equals the orbit rate of the spacecraft).

The frame ff'c is the standard roll, pitch, yaw frame of a

spacecraft with these three attitude angles zero. When the angles
are nonzero, the spacecraft frame is denoted if'0:X0 Y0 Z0, as

shown in Fig. 1. In this paper however, we assume that the
spacecraft is controlled perfecdy, and it always maintains its
ideal LVLH orientation.

We now define the orientation of the solar arrays relative to
the frame _rc or, equivalendy, if'0. As stated in the Introduction

and portrayed in Fig. 1, the two arrays turn relative to the
spacecraft at the two-degree-of-freedom hinges Ot and 02.

Considering +y-array first, its relative rotation is measured from
the frame XIO Y10 ZIO which is parallel to the spacecraft frame

_0. In order to track the sun, the first rotation of the array is

01y about the longitudinal axis Yl0; this rotation annuls the
clockwise rotation toOt of the earth-pointing spacecraft measured
from the ascending node line. The second rotation (often called
beta angle), denoted here 01z, takes place about the once-

displaced Z10-axis. We thus arrive at the array-fixed frame _-1:

XI Y1 Z1, with the array in the Y1Z1 plane and its outward

normal along X1. Note that when the array is normal to the
sun, the sun vector S from the sun to the earth is opposite to
the array normal X1. The transformation between the frame _0

and the array frame _1 for the sequence 01y, 01z is

7-0 -sOly cOl_ s01y S01z c01y Zt

(1)

where c(.) = cos(-) and s(.) = sin(.). The initial orientation of the
-y-array is the same as that of the +y-array, and the rotations of
the -y array are conveniently measured relative to the frame
X20Y20Z20 with Y20 opposite to Y0 and Z20 opposite to ZO.
The frame X20Y20Z20 is selected such that the solar cell face

of both arrays are on the same side. The first rotation 02y about
the Y20-axis (Fig. 1) nullifies the orbit rotation, and the

rotation 02z about the edge Z 2 brings the array to the desired
normal orientation relative to the sun. The transformation

matrix from the spacecraft frame _-0 to the array-fixed frame

_-2:X2Y2Z2 is

7-0 cO_.sO2y -s02zs02y --C02y Z2

Commands For Sun-Tracking

(2)

Because the solar arrays are hinged to the spacecraft, it is helpful
to express the unit vector S from the Sun to the Earth in the
spacecraft frame _r0 or equivalently, in the orbit frame ff'c. Let

Scl, Sc2, and Sc3 be the components of S in ff'c. Then, using

coordinate transformations involving the angles v, _., f_N, i,

and o_, defined above, these components are found to be

Scl = co._0t {ci(-s_Ncv + C_NC_.SV)+sis_.sv}
-so0t(Ct2NCV + s_ N c_.sv)

Sc2 = si(-s_Ncv + Cf_NCkSV)-cis_.sv

Sc3 = -scoot {ci(-s_Ncv + C_NC_.SV)+sis_v }
--co0t(C_NCV + s_ N cksv) (3)
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Fig. 1. A Spacecraft with + Y and -Y Arrays, their Frames, and
Articulation Degrees of Freedom

+Y-Array Commands
Because the first rotation 01y about the longitudinal axis

Yl0 annuls the once-per-orbit rotation of the earth-pointing
spacecraft, it may be clear that, ideally,

ely (t) = COot + el0 (4)

where 010 is 01y(t=0). Note that 01y(t) is anticlockwise
positive, whereas the negative sign of COOthas already been
accounted for in (3), so COOtin Eq. (4) is positive: O0L>0. To
determine 010 and the second rotation 01z, we observe that

when the array is normal to the sun, the incoming sun vector S
is opposite to the outgoing array normal XI:

S 5_1 =[Xl Y1 Zl ]T = [_1 0 0]T (5)

where the superscript T means the transpose of the column
vector. Substituting Eq. (5) in Eq. (1) the sun-ray vector S in
the LVLH frame is found to be

Sd 1 _-0Sc2

Sc3

-cO b C01z

-sO 1z

SOly C01z

(6)

The unknown initial angle 010 is determined by substituting
Eq. (4) in Eq. (6), yielding:

010 = tan-1
-[ cfl N cv + S_N ck sv]

-[ ci (-sfl N cv + cfl N ck sv) + si sk sv ]
(7)

where the negative signs in the numerator and denominator are
retained so as to arrive at a unique value of 010 within the range
-n <_010 -<n; this will ensure that the solar cell face of the

array looks at the sun. The array's inclination angle 01z is
obtained from the second components of Eqs. (3) and (6):

01Z = sin -1 (si (s_ N cv - cfi N ck sv) + ci sk svl (8)

Eq. (8) indicates that, as the earth rotates around the sun (0 -<v
<_2n), the angle Olz varies sinusoidally with a certain
amplitude; this is illustrated below in three examples.

Example 1: i'_N = O, v = rd2
The correctness of Eq. (7) and Eq. (8) can be illustrated by
considering v = n/2 and ON = 0° for which

Ol0=tan -I 0/[-c(k-i)] = n (9a)

O1z = k - i (9b)

If we further assume that the satellite orbit lies in the ecliptic
plane, which means the orbit inclination i equals k, we will
have 01Z = 0. In Eq. (9a), the choice 010 = n and not zero is
selected to ensure that the solar cell face of the array, not its
back side, is towards the sun. Moreover, Eq. (9a) and 01z = 0

together imply that in order to be normal to the sun rays at t =
0, the array must be in the plane Yc Zc. Physically, the
conclusion 010 = _-L-nand 0:, = 0 is seen to be valid in Fig. 2 for
the parameters v = n/2, _ = 0, and i = k at t = 0.

Example 2 ," _N = O, and arbitrary v

For g2N = 0, Eq. (7) and Eq. (8) yield

010 = ta n-1
---CV

-c (k-i) sv
0lz = sin -1 [ sinv sin (k-i) ]

(lOa,b)

Eq. (10b) states that, inasmuch as (k-i) is fixed, the angle 01z
will change periodically as the earth moves around the sun in
one year, 0 _<v < 2n; the extremes of 01z will be (k-i) when v
= n/2, and (i-k) when v = 3n/2. This is illustrated in Fig. 3 for
i = 28.5 ° and 43.5 °. Now considering the satellite orbit in the
ecliptic plane (k=i), Eqs. (10) simplify and, consistent with
Example 1, furnish

010 = -n/2 - v (1 la)

ely(t ) = coot - (hi2 + v) (1 lb)

For v=0, +y array's rotation 010 = -n/2 about the axis Yc,
measured from its datum orientation in the YcZc plane, is

illustrated in Fig. 2. Also, for f2N = 0 and i = 28.5 ° the linear
relationship (lla) is seen to be true in Fig. 3.

ZVE ZVE

t .. 1SPACECRAFT ORBIT

PARAMETE RS:

t, TO, i- k;CIRCULAR EARTH
(v - _r2 }

SUN WE

E/ %ESATELLITE _ Xc EXAMPLE 1

Z -7 EARTH i " O,O-
SATELLITE _ _. Y_/E _::'.J (ARRAY

"_'° /_'\ " ___ r.?" FAc_G
XVE Yc _.]¢'_ 810 --_/2 _" TH_SLIN)

(ARRAY FACING

THE SUN)

Fig. 2. +y Solar Array Orientations at t=Ofor Examples 1 and 2
(VE = Vernal Equinox)
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Fig. 3. Initial Angle 010 about the pitch axis YOand inclination angle Olz about the short edge Zl-axis of +y array versus angle v

Table 1. Extrema of the tilt angle 01z

Earth's Position
in the

EclipticPlane (v,deg)
90°
90°

-90 ° (or 270°)
-90 ° (or 270°)

AscendingNodeAngle
of the Spacecraft's Orbit

(D.N, deg)
0

180 o
0 o

180 o

Extreme
Value

ofOlz
_.-i
_,+i
i-_.
-k-i

Example 3: Arbitrary 17_and v
Fig. 3 illustrates the variation of 010 and 0lZ as a function

of the earth's position in the ecliptic plane ( 0 < v <_2n ) for i
= 28.5 ° and 43.5 ° and eleven values of the ascending node angle

ON. The apparent discontinuities in 010 curves at _+x are
inconsequential because the angle 010 has a range of 2n and +x
= -n. Furthermore, from Eq. (8), we infer that

It is instructive to compare the commands developed above
with those developed by McElvain 1 and Kalweit 2.

3. Solar Radiation Torque
Radiation Torque on a Solar Array

For momentum accumulation study, the radiation torque _g

at the spacecraft mass center is required. Referring to Fig. 1, let
hj (j = 1,2) be the vector from the reference origin O to the solar

array hinge Oj (j = 1,2), and P_pj(j = 1,2) the vector from the

hinge Oj to the pressure (or geometric) center of the array.
Additionally, let r,- be the vector from the reference origin to the
vehicle mass center. Denote the moment arm vector of the solar

radiation force on the j-array as Cpj. Then,

A

£.pj = -r_.,:+ bi + ._j .Ppj (j = 1,2) (16)

for _N = n: O_z = sin z [ s (_.+i) sv ] (12)

which is a counterpart of Eq. (10b) in Example 2. Clearly, the
extremes of 01z are

_,+i @ v =n/201z= -(_.+i) @ v 3x/2 (13)

These, as well as the sinusoidal variation of the angle 01Z
versus v, are illustrated in Fig. 3. Also, see Table 1.

-Y Array Commands
Regarding the -y-array, because the angles 02y and 02z are

defined about the axes Y20 and Z20 which are respectively

opposite to the +y-array axes Y10 and Z10, it is clear that for
keeping the array normal to the sun-rays

02y = -01y (14a)
O_, = -Ot_ (14b)

Recalling Eq. (4), the desired 02y(t) will therefore be

02y(t) = ---_0t - 010 (15)

where ._Oj is the transformation matrix defined by Eq. (1) and
Eq. (2) for j=l.2. Following Reference 5, Section 8.3, the
radiation torque experienced by a spacecraft about its mass center
owing to the sun rays off-normal to the jth-array, is

_gj = pAj c(xj_jx [ (o= + Ord)S + 2 (o_/3 + On c(xj)nAj ] (j=l,2)
(17)

where p denotes the radiation pressure on a totally absorbing

normal surface, Aj is the array's area, cctj = cos ctj and ctj is the

angle between the inward normal unit vector nAj and the sun
vector S, _a is the absorptivity coefficient of the surface under
consideration, ffrd is the diffused reflectivity coefficient, and _rs

the specular reflectivity coefficient. The notation x in Eq. (17)
transforms a column vector to a 3x3 skew-symmetric matrix, as
def'med by Eq. (13), Section B.2, Reference 5.

Array Normal to the Sun
When the sun rays are normal to the jth array, co_j = 0, and

IIAj = S and Eq. (17) simplifies to
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where

_gj = pAj OA goj x S (18)

OA = 1 + Ors + 2Ord/3 (19)

The three components of the radiation torque, Eq. (18), on the

spacecraft in an arbitrary orbit, with the array normal to the sun,

will now be shown explicitly. For concreteness, we assume that

the spacecraft mission is such that the power and thermal

requirements allow the +y-array to be normal to the sun. To

express the vector Cpl component-wise, note that the length of

the A-frame along the pitch axis is 'a' (Fig. 1), and the rotation

01z takes place about the Zl-axis of the array without involving

the A-frame. Because in the X1Y1Z1 frame, the pressure center

of the array is at a distance t_/2 along the yl-axis from the

transverse edge of the array (Fig. 1), the vector ._1 P_p1 in Eq.

(16) can be calculated easily using Eq. (1). Furthermore, we

assume that when the arrays are in the Y0Z0 plane (01z = 0 =

02z), the vectors r_.cand bl are in that plane (Fig. 1). Therefore,

in the LVLH frame if-c:

-r_ + t21 = [ 0 -rcy+bly -rcz+blz IT (20)

The vector gpl, Eq. (16), will therefore be

gpl =

-b S01z C01y

-roy + bl y + a +b cO I z

-rcz + blz +b SOlz SOty

, b_ 1_/2

(21)

For analytical convenience, define

bly @ =-rcy + bly + a blz @ = -rcz + blz (22)

Using (21), (22)in Eq. (18) the following components of the

torque __g1 in the LVLH frame are obtained:

Yc

belz S0tz+ (b +b_y C0tz) s01y

--gl = PAl OA -b_,c01zC01y (23)

('0 +bl_y c01z) C0ly

While the angle 01y(t) varies linearly at the rate COo, changing

by 2_ over one orbital period, the angle 01z is virtually

constant in that period. Eq. (23) therefore indicates that, in the

LVLH frame, the roll (x-) torque comprises a constant and a

cyclic torque, the pitch and yaw torques are cyclic, and the cyclic

yaw torque is in quadrature with the cyclic component of the

roll torque. (Also, see Ref. 4.)

-Y.Array Off-Normal To The Sun

When the spacecraft at hand has two arrays, power and

thermal requirements might dictate one array to be normal to the

sun rays and the other array off-normal. Fig. 4 depicts one such

posture for the spacecraft in Fig. I, with +Y-array normal and -

Y-array off-normal.

To keep the mass center of the -y-array on the rotational

axis Y0, the A-frame is turned about the z2-axis by an angle

02z, a (a negative 02z,a is shown in Fig. 4); also, the array's

normal-to-the-sun orientation angle is denoted 02z, whereas the

off-normal orientation angle is denoted 02z'. Under these

circumstances, the transformation matrix .C,,.02,defined by Eq.

(2), is altered to ._32,A for the A-frame replacing 02z with

02z,a, and to .C,.02' for the -y-array substituting 02z' for 02z.

Thus the pressure center vector.C,.02 Pp2 in Eq. (16) is revised
to

.C,02 _9 p2 = = a/-C02z,a + b |-C02z
L-S02z,a S02y L-s02z' S02y

(24)

To evaluate the torque ._gj 0=2), we note that the vector -r_c +

112 for the -y-array in the frame _-c is, following Eq. (20)

-_ + 122 = [ 0 -rcy+ b2y -rcz + b2z ] T (25)

where, to symmetrize the mass distribution

b2y = -bly b2z = bl z (26)

Using the equation 02y = -01y and Eqs. (24), (25), and (26), the

vector Cpj (j = 2), Eq. (16), is found to be

_b s C01y
gp2 = -rcy -bly - bc

---rcz +blz +bs s01 y

_-c

Cp2x]_c= [ Cp2y (27)

L CP2z

where the lengths bc and bs are defined as

bc = a C02z, a + b C02z'

bs = a S02z, a + b S02z' (28)

The vector S and the inward normal n_A for the -y-array in

the off-normal frame _-2A: X2 A Y2A Z2A (Fig. 4) are

S _TzA=[-c_-z_ -siS-2z 0]T , 0.Aft 2a=[_l 0 01T (29)

where _ is the off-normal angle, defined by

8._ = 0_, - 0_,' (30)

and equal to the angle ct2 between the vectors S and n_A for the

array. Therefore the vector [ • ] in (17) the spacecraft frame is
found to be
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where

[ (Oa + Crd) _ + 2 (Crd/3 + Crs cot2) nA ] 2_r0 =

[ -Ccx CO2y Ccy --dcx SOZy IT

Ccx = Cx2 C02z ' - Cy2 S02z'

Gcy =Cx2 S02z" + Cy2C02z'

Cx2=(1 +Cr,)c_ + 2Crd]3

Cy2 = (1 - C,,) S&z_

(31)

(32)

Using the vector f,-p2 in Eq. (27) and the vector Eq. (31) the

torque _g2 is found to be

_g 2_c = pA 2 C82z

-(-rcz+blz)Ocy- {bsOcy+(rcy+bly+bc.)Ocx }S01y ]

- (-rcz + b_,) Ocx }C0ly I (33)
- {bsOcy+ (rcy +bly +be) (3cx }C01y

which exhibits the same attributes as those exhibited by _g 1 in

Eq. (23).

Example 1: Off-Normal Angle 62: = 0 and A-Frame Angle 02:,a = 0

In this circumstance, the +y- and -y-array become parallel

because now 02z' = -01z, and the torque g2 Fc, Eq. (33),

simplifies to

b2ezso lz + (-b+ bfyCelz) sely

_g2 _-c = pA2 CA
- b2zC0 lzCOly

(-b + bey c0tz) C01y

(34)

Example 2. Both Arrays Normal to the Sun: Resultant Torque

Adding Eq. (34) to Eq. (23), and assuming that the arrays

are identical in geometry as well as in optical surface properties

so that As = A1 = A2, the resultant torque _g equal to _g l +

_g2) is found to be

g _c = 2pA, OA

(-rcz + blz) S01z -rcy C01zS01y

(rcz - blz ) C0 tzC01y

-fcy C01zC01y

(36)

Mass asymmetries in the spacecraft generate the components rcy

and rcz; how each component contributes to the radiation torque

on the spacecraft is seen clearly in Eq. (36). We also observe

that, because the two arrays are parallel and geometrically

identical, the A-frame length a and the array's half-length b do

not contribute to the total torque, only the hinge location

referenced from the vehicle mass center matters.

Example 3 +y-Array Normal and -y-Array Off-Normal: Resultaru

Torque

The resultant torque g Uc is now obtained by adding Eq.

(23) with Eq. (33). To build a simple expression for ..g_yc, we

observe that, in the _c frame, ignoring the variation in the

angle 01z over one orbit period, the constant part gc of the x-

torque (roll torque) is found to be

gc =ApA s blz • [C A SOlz _ Ccy C82z) (37a)

and the amplitude ga of the sinusoidally varying part ga S01y of

the x-torque is

ga _ pAs [CA (b + bly ¢ COlz) - C82z {bs Ccy +

(rcy + bly + be) O'cx} ] (37b)

The z-component (yaw torque) has no constant part, and its

sinusoidal variation is in quadrature with the roll component.

Lastly, the y-component (pitch torque) also varies sinusoidally,

with its amplitude gb equal to

gb = -pAs blz _ [CA C01z +Ccx c_52z] (37c)

Thus, the total radiation torque _g ffc acting on the spacecraft at

its mass center, in the spacecraft frame, is

gyC =

gc + ga S01y

gb C0ty

ga C01y

(37d)

where

b2y ® =-rcy-bly-a b2z ¢ = blz ¢ (35)

The constant roll torque gc in the rotating frame _c becomes a

periodic torque in the orbit plane in a non-rotating frame;

conversely, the periodic roll-yaw torque in ffc becomes a

constant torque in the orbit plane in an inertial frame.
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Meanwhile,theperiodicpitchtorqueremainsperiodicevenina
non-rotatingframebecausetherotationcoottakesplaceabout
thepitchaxis.
RadiationTorqueon SpacecraftBus

Usuallythesurfaceareaof spacecraftbusismuchsmaller
thanthatofthedeployedsolararrays,andthereforetheradiation
torquecausedbythebusisanorderofmagnitudesmallerthan
thatcausedbythearrays.Forthisreasonandtoconservespace
theanalyticaldetailsofderivationoftheradiationtorqueona
buswillnotbegivenhere.
TorqueOnAnArrayShadowedBytheSpacecraftBus

Fig.5portraysa spacecraftwithacylindricalbusanda
solararray,thebuscastingashadowonthearray.Thelit semi-
cylindricalsurfaceisABC.Theshadowboundaryonthearray
mayutmostconsistof threesegments:anarccastbythelit
end-faceofthecylinderandtwostrmghtlines,enclosingthearc,
castbytheboundaryrulingsatAandC.TheshadowinFig.5,
though,hastwosegmentsonlybecausetheshadowof the
rulingat A fallsoff thearray.The shadow boundary is

determined as follows

It may be clear that at any time only one array at the

most will be shadowed. Knowing the angle 13between the sun-

ray unit vector S and nadir unit vector _, we first determine

which end-face is lit:

if 13< n/2, the earth-pointing end-face is dark, and the

opposite end-face is lit;

if _ > n/2,the earth-pointing end-face is lit, and the

opposite end-face is dark

and the lit semi-cylindrical surface is then identified. Next, let r

be the vector from the reference origin O to any point P on the

edge of the fully-lit face of the bus or along the two boundary

rulings of the lit semi-cylinder. The vector from the hinge Oj of

jth array (j = 1,2) to the point P is then -bj + r_. The two

components of this vector in the array plane yjzj, which is not

necessarily normal to the sun, are

(-_j + r). _Jj and (-bj + r). kj (38)

where Jj and kj are the unit vectors along yj- and zj-axis of the

array, respectively. If these components fall on the array, that

is,

a < (-bj + r_). jj (39a)

- w/2 _<(-bj + r_). kj _<w/2 (j = 1,2) (39b)

where w is the width of the array along the zj axis, then the

array j is clearly shadowed. In that event, as the vector r moves

along the edge of the lit end-face and the boundary rulings, the

above two components will delineate the shadow boundary.

The radiation torque due to the array is still given by Eq.

(17). The area Aj represents the lit area of the array, and the

vector Ppj in the moment arm _j, Eq. (16), is the vector from

Oj to the instantaneous center of pressure of the shadowed array.

The instantaneous lit area and the vector _Ppj are calculated

numerically.

_IJLL_ L _ _ACE

'S'c "_E BUS Z,3

SPACECRAFT _. "

BUS _ P

Llr :

/

v 3

Fig. 5 Cylindrical Spacecraft Bus Casting Shadow on the Solar

Array
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Fig. 6. Comparison of the total radiation torque on the

spacecraft with and without considering the shadow; Orbital

parameters: v = 90 °, ON = 180 °, i = 20 °, corresponding solar

arrays' inclinations: Olz = -02z = 43.5 o (arrays parallel and both

normal to the sun)
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Illustration
For parameters not recorded here because of space

limitations, Fig. 6 furnishes total radiation torque (two arrays
plus cylinder) with and without considering the shadow of the
bus on the array, for r,.=0 and both arrays normal to the sun
rays. When the shadow is ignored, we observe that, in
conformance with F_,q.(36), the yaw torque is zero and the roll
torque a constant over a few orbits. Slight oscillations in the
roll torque are present because of the cylindrical bus. The
variation of the pitch torque in Fig. 6 conforms with the y-
component of the solar radiation torque in Eq. (36). Regarding
the effect of shadow on the array, we observe that while the
shadow does not alter y-torque, the trough of the x-torque
plummets from --0.29E-3 ft.lb to --0.38E-3 ft.lb during the
shadow period. A small (0.1E-4 ft.lb amplitude) cyclic z-torque
also arises during the shadow period. For the parameters under
consideration, it turns out that the -y-array is shadowed, +y-
array is noL Traversal of the cylinder's shadow on the -y-array
is shown in Fig. 7. The growth of the shadow area on the -y-
array is shown in Fig. 8 for three parametric sets, including the
set for Fig. 6. Fig. 8a shows that, for example, when 02z = -
43.5 °, the maximum shadow area equals 88 sq.ft [(shadow area)
/ (array area) = 88/702.85 = 0.43] and the array remains partially
shadowed for nearly 6 hours (one-fourth of the orbital period).
We nonetheless also observe that the shadow occupies 43% area
of one array only briefly (several minutes), occupying
progressively smaller area before and after tic maximum shadow
epoch. As the shadow traverses, the pressure center of the lit
portion travels also; the loci of the instantaneous pressure
center, from the moment the shadow enters the array till the
moment it leaves, are shown in Fig. 8b for three sets of
parameters. As expected, these loci are closed curves, and the
bigger the angle 102zl, the wider the loci. The shadows occur
around different orbit angles toot for different sets of orbital

parameters v and t"lN (even if the orbit inclination i is the same
for these orbits). For plotting convenience, however, the
maximum shadow epoch is shown to be the same (t = 18 hrs)
in Fig. 8a for all three sets of parameters. In the preceding
results, the center of mass vector [c is zero. However, as the
arrays orientations change relative to the spacecraft bus while

ao

i1o

40

2o

015

'_,02Z = -43 5 °

111 ii t$ 19 2o 2_ 12

TIME (hrs)

(8)

Y2._I(15 ( ir¢l'_ I

Fig. 8. (A) Shadow area on the -y-array versus time; (B) Locus
of the pressure center of the -y-array as shadow travels on the
array; orbital parameters for 02z = -43.5 o the same as those in
Fig.7; for 02z = -30 °, the parameters are v = 30°and O N =
140°;for 02z = -22 °, v = 80 °, O N = 80 °, and i = 20 °

tracking the sun, r_.c may vary depending on the arrays'
arrangement. In the case at hand, this variation is found to be
small, and it was not ignored in the computations.

The preceding results show that the spacecraft bus shadow on
the array does not change radiation torque significantly. Also,
based on the results not shown here due to space limitations and
as stated before, the radiation torque on the bus is found to be an
order of magnitude less than, and so negligible compared to,
that on the arrays

4. Momentum Accumulation Due to Solar
Radiation Torque

In the following analysis we will determine the momentum
accumulation due to the arrays' torque only. It is instructive to
compare the following development with that by McElvain 1.

Short Term Accumulation

Let lib be the inertial angular momentum vector of the

earth-pointing spacecraft under consideration. If H x, Hy, H z are
the components of Hb in the body-fixed frame, then, in the

presence of the radiation torque, (37d), they will be governed by
the following three equations, expressed in the if'o:
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I_Ix- coOHz --- gc + ga S01y (40a)

l_ly --- gb C01y (40b)

l_Iz+ coOHx --- gaC01y (40c)

As iswellknown, theroll(Hx)and yaw (Hz)momentums are

gyrically coupled, whereas the pitch momentum (Hy)is
independent of roll and yaw. Examining the definitions of ga,
gb, gc in Eqs. (37 a, b, c), we observe that they are functions
of, among other things, the inclination angle 01z and the off-
normal angle 82z. Because these angles depend on the earth's
motion around the sun (the angle v), they are held constant in
flight over a few days, and therefore, within this period, the
quantities ga, gb, gc can be regarded as constant. Moreover,

assuming that time t can be measured such that 01y (t=0) = 0,

instead of 010 according to Eq. (7), 01y (0 in Eq. (40) can be
replaced with coOt. With these two assumptions, Eq. (40a) and

(40c) can be integrated together, yielding (i 2 = -1)

Hx + iHz = -i (gc/coO) (l--e-i°Ot) + i t ga e-ico0t (41)

The integration of Eq. (40b), on the other hand, yields the pitch
momentum Hy as

Hy (t) = (gb/co0) sin toOt + Hy0 (42)

Because a constant torque gc in the orbiting frame is a cyclic

torque in the inertial frame, whereas a cyclic torque ga in the
orbit frame is a constant torque in the inertial frame, it is
natural to find in Eq. (41) a cyclic variation in (Hx + iHz)
owing to gc and a secular growth owing to ga. At any arbitrary
instant, the magnitude of the secular term in Hx+iHz is tga,
showing a linear growth in the spacecraft momentum in the

roll-yaw plane. The pitch momentum Fly (t), Eq. (42), varies
cyclically, with the amplitude equal to gb/o0. The constant

HyO in Eq. (42) equals Hy(0) and it embodies the spacecraft's y-
momentum arising from its once-per-orbit equilibrium rotation.

Yearly Accumulation
It was just shown that the secular momentum in the roll-

yaw plane at the end of one orbit (coOt = 2_) is (H x + iH z) = i
2_ g_/oO, where the coefficient ga, Eq. (37b), is a function of
the solar array's inclination angle 01z for an array normal to the
sun, and of the inclination angles O'2z and off-normal angle 82z

for an off-normal array. Fig. 3 shows that the angle 01z (or 02z
which is equal to --01z) varies as a function of the angle v (the
earth's motion around the sun); therefore in order to calculate
the yearly momentum accumulation, this variation must be
considered. To separate the linearly varying angle v(t), 0,L:_v<9_,
from other constant orbital elements k, fiN, and i in the
definition of 01z, Eq. (8d) is rewriaen thus:

01z = sin -1 [ (si S_N) cv + (-si cO N ck + ci sk) sv] __a

sin -] [A0 sin (vo + (,t)] (43)

with the amplitude AO and the phase angle v0 defined by:

Ao = (A, 2 + At2) iT2"; 1; Vo= tan -t [AJAc] (44)

A s = si s£_N A c = -si cO N c_, + ci s_, (45)

Strictly speaking, because of orbit regression the ascending node
angle ON is not constant, but this variation is ignored here.

Spacecraft With +Y-Array Only;
Array Normal to the Sun

When the +y-array is normal to the sun, the coefficient ga
given by Eq. (37b) simplifies to

ga = pAs <_A Co+ bly e COlz) (46)

ignoring the second term in [.] in Eq. (37b) because it pertains
to the -y-array. The magnitude of the secular momentum
accumulated at any instant t then becomes

IHx+iHzl = pAsCrA(b+bly _c01z )t (47)

The yearly momentum is obtained by integrating (47) over the
annual variation of the angle 01z. Let ny be the current orbit
under consideration:

ny = t/xo, "tO=_2n/co0 (48)

where x0 is spacecraft orbit period, and let Ny be the total
number of spacecraft orbits in one year. Then the yearly
accumulation will be

Ny

Hyr = (pAs erA "C0) S (b + bly @ C01z) dny (49)
0

Because -re/2 < Olz < _/'2, C01z will always be positive. With

the aid of Eq. (43) and recalling that b is constant (= L/'2), and

treating bly _, Eq. (22a), as constant, Eq. (49) transforms to

Ny

= (pAs <3A X0) [bNy + bly _ S { l-A02 sin2Hyr

0

(vo + vxo ny)} 1/2 dny] (50)

(The assumption bly a constant may not be always valid,

because the quantity roy involved in the definition of bly _ may
change due to Olz, but this change can be minimized by

keeping the array's mass center on the axis of rotation.) Now,

while ny changes from 0 to Ny, the argument of sin 2 in Eq.
(50) varies from v0 to v0+2n; therefore, the integral in (50) is

an elliptic integral of the second kind. Measuring the time t
such that the phase angle v0 = 0 and capitalizing on the

symmetry properties of the elliptic integral at hand, Hyr after
integration is found to be

Hyr = (pAs OA X0) [bNy + 4 (blye/_%0) E (n/2, AO)] (51)

where E(_/2, A0) is a complete elliptic integral given by the
series:
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Fig. 9. Momentum accumulation in roll-yaw plane, due to the
(55) two arrays only: + Y array normal to the sun, 01z = -45 °,"-Y

array off-norn_l, 02z "= 25 °. S2z = 20 °, -Y array A-frame angle
02z,a = -37 °

Becasue the number of the spacecraft orbits in one year is

Ny = 27t/(_'x0)

the yearly momentum accumulation Hyr simplifies to

Hyr = Ny -c0 pAs GArb + bly _ (1 - A02/22 - ...) ] (54)

In the series (52) or (54), as many terms are retained as are
necessary to evaluate the sum up to a desired accuracy.

Spacecraft With +Y and -Y Arrays:

a) Both Arrays Normal to the Sun
The coefficient ga, Eq. (37b), now simplifies to

ga = -2pAs ffA rcy C01z

This is corroborated by the coefficient of SOly in the first
element of the vector equation (36). Comparing (55) with (46),
the yearly momentum accumulation in the present case can be
written down following Eq. (54):

Hy r = Ny "cOpAs OA [ -2rcy (1- A02122 - ...)] (56)

b) +Y-Array Normal, -Y-Array Off-Normal to the Sun
In this case, the coefficient ga is given by the full-length

equation (37b). The definition of the coefficients be, bs [Eq.

(28)], and Ccx, Ccy [Eq. (32] reveal the presence of the products
of the trigonometric functions of the angles 0"2z and 02z, a- The
analysis therefore seems intractable, and developing a closed-
form expression for Hyr infeasible; consequently, numerical
integration of the equation IHx + iHzl = t ga over one year
seems inevitable.

Yearly Propellant Consumption

Annual propellant consumption, Wp, should not be based
on the momentum accumulation over one orbit and treating
that constant for entire year, for the daily momentum varies
significantly over one year (illustrated later in Fig. 10). Instead,

knowing Hy r from Eq. (54), Eq. (56), or otherwise, and
knowing the specific impulse Isp of the propellant under
consideration and moment arm £j of the thrusters from the

vehicle mass center, Wp is obtained from

Wp = Hyr / (Isp/-J) (57)

Illustrations
Example 1. Spacecraft With Two Arrays." Momentum Accumulation
Over Three Orbits

Fig. 9 illustrates momentum accumulation in the roll-yaw
plane, Eq. (41), with the orbit angle co01as parameter. In

particular, it applies to the spacecraft configuration shown in
Fig. 4, with +y-array normal to the sun and -y-array off-normal
at an angle _z,. Fig. 9 shows the linear, radial growth of (Hx +

iHz)---the term itga e -iC°0t in Eq. (41)--superimposed upon a
cyclic variation with an amplitude of gdcoo.

Example 2. Momentum Accumulation As a Function of Earth's
Position in the Ecliptic Plane

In order to obtain complete dependence of the daily
momentum accumulation over a one year period, we next
illustrate in Fig. 10 the roll-yaw momentum at co0t = 2n and
the pitch momentum amplitude gb/cO0 as a function of the

angle v: 0 _<v <_2_x, with the off-normal angle 82z as a
parameter. Figs. 10a and 10b show that, for off-normal angle
82z = 0, the roll-yaw and pitch momentum amplitude varies
periodically with v, with half-year period; the corresponding
ratio Hy / IHx + iHz I remains constant for entire year. When the
off-normal angle 82z of the -y-array is introduced, the half-

yearly periodic variation of the roll-yaw momentum disappears
and, instead, it begins to vary asymmetrically with v. Also,
the peaks and valleys of the roll-yaw momentum grow further
apart as 82z increases. The half-year periodic variation of the
pitch momentum amplitude alters little with the angle 52z. Fig.

10c illustrates the ratio Hy / IHx + iHzl; the variations in this
ratio with v become more pronounced as _2z increases. This

ratio is of interest because it helps decide the cant angle of the
reaction wheel configurations considered in the next section.

Example 3. Yearly Momentum Accumulation
When the off-normal angle 8z, equals zero (that is, when

both arrays are normal to the sun) the yearly momentum can be
obtained analytically using Eq. (56), and when 82z ;_ 0, the
yearly momentum is obtained by numerical integration of the
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areaunderthecurvesIH,,+iHzlinFig.10afortheentirerange
0< v _<2re. Fig. 11 depicts the yearly momentum against 82z
for the range 0 _<_ _<20" for different orbit inclination angles,
keeping _N at 170 °. For 8z_ = 0, the analytic prediction was
compared and found identical with the numerical results. The
number of terms that must be retained in the infinite series in

Eq. (56) increases with the orbit inclination i, and yearly
momentum diminishes a little. The yearly momentum,
however, increases significantly with the off-normal angle _z_,

as seen in Fig. 11.
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Fig. 10. Variation of roll-yaw and pitch momentum with the
earth's position (the angle v) in the ecliptic plane; y-array
normal to the sun, -y-array off-normal at an angle &2zand its

A-frame at an angle 02z,a; Z = 23.44 °, orbit ascending node
angle O N = 170 °, and inclination angle i = 28.5 o
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Fig. 11. Annual roll-yaw momentum versus off-normal angle
of-y-array; +y-array always normal to the sun, 12N = 170 °

5. Reaction Wheel Sizing and Configuration
Optimization

In Section 4, we observed that the momentum along the
roll and yaw axes are coupled. Depending on the initial
conditions, the secular momentum build-up tga can exceed the

capacity of the wheels either about the roll-axis, yaw-axis, or
any other direction in the roll-yaw plane. Therefore, for the
design purposes, the desired momentum capacity in the roll-yaw
plane is the same in all directions. In contrast, the pitch
momentum caused by the radiation torque is cyclic, with the
amplitude equal to (gb/cO0). Hence, the pitch and roll-yaw
momentum requirements leads to the well-known right circular
cylinder momentum requirement for designing a wheel
configuration, with cylinder axis along the pitch axis. On the
other hand, the reaction wheels are also required to produce
certain peak control torque about each of the three spacecraft
axes. The torque requirements therefore form a rectangular
parallelepiped. Both the momentum and the torque requirements
can be met, in principle, using three wheels (not necessarily an
orthogonal set); but for the sake of redundancy, four or more are
often employed. In the following subsections, four-, six-, and
three-wheel configurations are analyzed, two arrangements of the
wheels and one-wheel failure are considered for each

configuration.
To visualize the wheel configuration most easily, Ftrst place

the spin axes of all the wheels in the roll-yaw plane, perhaps
radially symmetrically along the roll and yaw axes or otherwise,
and then cant all spin axes, equally or unequally depending on
the design, towards the pitch axis or its opposite. When the
wheels are not along the spacecraft axes, a transformation
matrix Cbw is required to transform the wheel momentum
vector Hww along the wheel axes to the total wheel momentum
Hbw along the spacecraft axes:

lib. = £.bwH,,,,,, (58)
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Whenthenumber of wheels, nw, is more than 3, the matrix

Cbw is rectangular, 3xnw, and its pseudo-inverse .Cbwt

.C,.bwt = ._,bwT (.C,bw ._,.bwT)-1 (59)

is required for the inverse transformation of (58):

Hww = .C.bwt l_w (60)

The above two transformation matrices are useful also for

transforming the desired control torque Ic (3xl) about the
spacecraft axes to the desired rate of change of the wheel angular

momentum vector I_Iww(nw x 1):

l:Iww = - _w t T_ (61)

To determine the optimum cant angle(s) with the roll-yaw
plane, it is logical to impose the requirement that, for a desired
momentum vector capacity l:[bw in spacecraft axes, the norm of
the wheel momentum vector Hww be the least so as to

minimize the cost and weight of the wheels. One suitable norm
of the vector I-lww is its Euclidean norm IIHww tl defined by

 En . il (62)

where Hwi (i = 1..... nw) are the elements of the vector Hww.

The minimization of II Hww II also results in minimum power
consumption by the wheels for controlling the spacecraft, as
shown below.

Let ¢0wi(0) be the initial speed of the wheel i, and

o_i(t) the instantaneous speed while the wheel is acted upon by
an electric motor, changing the wheel's momentum Hwi at the

rate l:lwi(t ). Then

0_wi(t) = 0)wi(0) + lw-1 S I:lwi (t) dt (63)

where lw equals wheel's moment of inertia about the spin-axis.

For a constant I_lwi, the instantaneous power Pwi consumed by

the wheel i is given by,

Pwi = I l_Iwi I Imwi(O) + Iw-1 I_Iwi t l (64)

where absolute values are taken to ensure that the power Pwi is

positive for both signs of I_Iwi(t) and mwi (t).To determine the

worst power consumption by the wheel assembly, we assume

that ¢awi(0) has the same sign as that of l_Iwi. Furthermore,
assuming that ¢Owi(0) is the same for all wheels, the total

power Pw consumed by the nw wheels will be

Thus, we see that, ignoring the linear term, minimization of

power consumption leads to the minimization of the norm II

fiww II.

The vectors Hww and I_lww are related, respectively, to the

required momentum capacity _H..bwand the control torque

capacity T.T.cthrough the same pseudo-inverse matrix .Qbwt.

Therefore, the minimization of both Hww and l_lww yields the

same optimum cant angle if the components of Hbw and Ic are
proportional. This condition, however, is not always obeyed;
for instance, in the presence of radiation torque, the destred roll
and yaw momentum requirements are the same, but the desired
roll and yaw torque requirements may be different because the
roll and yaw errors might be controlled with controllers of
different bandwidths, and the corresponding moments of inertia
might be quite different. As a different example, the roll and
yaw torques limits could be the same to facilitate momentum
dumping with thrusters. The need for deliberation is thus
evident.

Four-Wheel Pyramid Configurations
One possible arrangement of four wheels is shown in Fig. 12.
The angle between two adjacent wheels is 90° , and they all are
equally canted toward the -y axis by an angle r I measured from
the roll-yaw plane.When the cant angle rl and the angle y in the
roll-yaw plane are both zero, the momentum h I of the wheel 1
is along the z-axis, h2 along the x-axis, h3 opposite to h1, and
h4 opposite to h 2. The angle _, is introduced so that the wheel

torque can contribute, if desired, to all three axes and not just to
roll and pitch or yaw and pitch. The corresponding rectangular
matrix _,.bw is

['crls7 cTIc7 -crls7 -crlc_, "]

-4 4 ] <66)LCrlCy -crlsy --crlcy crls_

whose pseudo-inverse, Eq. (59), is found to be

c_/2c_1 -1/4srl -s_'/2c_
"_wt = -s_'/2c_l -1/4Srl -c_F2c_I (67)

-CTP2CT1 -l/4srl sy/2crl

Let H x, Hy, Hz be the desired momentum capacity of the
reaction wheels about the roll-, pitch-, and yaw-axis of the
spacecraft. These three components disperse along the four
wheel axes as follows, using Eqs. (60) and (67):

F ( Hzs7 + HzcT)/2caq - Hy/4srl 7

1 ( HxcT- Hzs-f)/2cr I - Hy/4sx l Jtt,. = l(_H,sv _ Hzc_,)/2crI _ Hr/4sr I (68)

(-H,c_, + HzsT)/2cr I - Hy/4sr 1

Let, Tx, Ty, Tz be the desired maximum control torques about
the x-, y-, and z-axis of the spacecraft. The maximum rate of
change of the wheel angular momentum about wheel axes is
then, according to Eqs. (61) and (67)

nw

P,,,= iox,,(o)lY
i=l

I l_lwi I + t lw -I lll_lwwII2 (65)

14 HH/VT-032



h2

-" X (ROLL)

I1
h1

Z
flaw}

Fig. 12. Four-Wheel Configuration

r-(-T,sv- Tzcy)/2c_ + Ty/4Srl q

|(-Txcy + Tzsy)/2Crl + T/4slq JI_Iww= |( T,sy + T,cy)/2crl + T/4srl (69)

( T_c'r- TzST)/2crl + Ty/4S'q

If Hx, Hy, Hz are the desired momentum capacity of the
reaction wheels about the roll, pitch, and yaw axis of the
spacecraft, the 4xl vector Hww is calculated analogously. Based

on the definition (62), the norms IIHww IIand II£:[ww II are then

found to be:

IIHww II2 = (Hx 2 + Hz 2) / (2c2"rl) + Hy 2 / (4s2'q) (70)

UI_IwwII2 = (Tx 2 + Tz 2) / (2c2_) + Ty 2 / (4s2q) (71)

which are independent of the angle 7 because the angle between
two adjacent wheels is 90° . Comparing the two norms, it is
clear that if (H x, Hy, Hz) and (T x, Ty, Tz) are proportional,the
minimization of one is the minimization of the other. The

optimum cant angle 11" is found to be

tan 4 rl* = Hy2/2(Hx 2 + Hz 2) = Ty2/2(Tx 2 + Tz2) (72)

which may be rewritten in a more revealing form:

Tx2/Ty 2 + Tz2/Ty 2 = 1/(2tan 4 _*) (73)

which is the equation of a circle in the plane (Tx/Ty,

Tz/Ty) and the radius of the circle equals 1/('_/-2tan 211"). Eq.
(73) states that as the torque requirements about x- and z-axis
diminish, the radius of the circle shrinks and the optimum cant
angle _* increases. This is exemplified in Fig.13 where Eq.
(73) is plotted for rl* = 25 °, 30°, .... 60 °.

The norm III-_IwwIIcan be made dimension-free by dividing Eq.

(71) with Ty 2. This dimension-free right side of Eq. (71) is
plotted in Fig. 14 as a function of 1"1for a given (Tx 2 +

Tz2)/Ty 2. The minimum value of the norm occurs at the
optimum cant angle rl*, and that minimum norm is found to be

II I_IwwII2 rain / Ty 2 = [ "_ (Gxy 2 + Gzy2) 1/2 + 1 ]2/4 (74)

where the torque ratios {txy and Gzy are det-med as

Gxy = Tx / Ty Gzy = Tz / Ty (75)

Table 2 furnishes optimum cant angle rl* for several desired
torque ratios; it also demonstrates that, for example, 11" = 35.26

as long as Gxy 2 + {Izy2 = 2, regardless of the individual values

of Gxy and <_zy.
To determinethetorque(ormomcntum) capacityof the

wheels to produce the desired maximum torques (or

momentums) alongthespacecraftaxes,we againconsiderl_ww,

Eq.(69).BecauseTx,Ty, Tz areonlythreeindependenttorque

requirements,thefourelementsoffiww arenotallindependent.

Indeed,theyareconstrainedby a relationshipthatisdivulged
from

fiw. = C w*Cbw/ .w, (76)

(Tx / Ty)2 + (Tz / Ty)2 = 1/(2TAN4'rl)

>._

/ '..__ 30° "_/40° °

1

-f4 4

T×/TY

-41

Fig. 13. Dependence of minimum-power cant angle on desired
torque ratios
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Table 2. Examples of dependence of optimum cant angle on the
desired torque ratios((rxy and rrzy )

(TxfTy) 2 + (Tz/Ty) 2
0.5

Optimum
Cant

Angle
45<>

1 40.06<>

2 35.26°

4 30.73<>

8 26.56°

Exa,'nple
Ratios

Tx/Ty TzfTy
0.5 0.5

tie 1/`5
1 1

0 `5
,5 0

2 2

Recalling (66) and (67), Eq. (76) yields four identical equations
stating

I:lwl =fi 2+ t't,,,4 (77)

The wheel momentums observe a similar relationship.

Because of (77) and because of the nature of decomposition of
the three desired torques Tx, Ty, Tz along the four wheel axes,
Eq. (69), it may be intuitively clear that the magnitude of each

element in (69) will not simultaneously reach I_tw,max--the
maximum achievable rate of change of wheel's angular
momentum. Therefore, recalling the definition (62)

II l_w_ 112< 4I_tw,mx 2 (78)

When the cant angle is optimum, the norm IIl_Iww IIis related

to the specified torques Tx, Ty, T z according to Eq. (74).
Therefore, in view of (78)

[ _ (Tx2 + Tz2) 1/2 + Ty 1/4 < Hw,mx (79)

By way of illustration, if the torque requirements about the three

axes are all equal (T x = Ty = Tz), the inequality (79) yields

l_lw,mx> 3Tx/4 (80)

Considering that there are four wheels, each of capacity fiw.mx ,

for controlling three axes of the spacecraft each requiring the
torque Tx, the inequality (80) is perhaps a natural result, but it

does not reveal just how much I_Iw,mx must at last be, to size

the wheel. For that, the Euclidean norm is not helpful and we
must focus on Eq. (69) itself, as illustrated in the following two
illustrations.

Wheels Contributing to Roll and Pitch or Yaw and Pitch Only

In Fig, 12, when 7 = 0 or 90 °, each wheel contributes to
either roll and pitch or yaw and pitch axes only. Regardless of
y, the optimum cant angle for equal torque and momentum
requirements satisfies, according to Eq. (72):

1"1"= 35.26 ° , tanq*= I/_, sin'q*= 1/'_, cosrl*=

(81)

Substituting T x = T v = T z and Srl* and crl* from (81) in (69),
we obtain, for 7 = 96 °

l_lww = T x [--0.179 1.045 1.045 -0.179 ]T (82a)

which yields the desired maximum wheel torque capacity when
not one wheel has failed

t_tw,mx > 1.045 Tx (82b)

It is illuminating to compare the inequality (80) with (82b).
Regarding the required momentum capacity of the wheels,

we first obtain Hww, from Eq. (60), for y = 90 °. Next, recall

that from Eq. (41), the secular roll or yaw momentum at the
end of one orbit is gat0 (tO = orbital period) and, from Eq. (42),
the pitch momentum amplitude is gb/o_0. The least momentum

capacity of a wheel for momentum dumping per orbit and for
optimum cant angle (81) is then

Hw,mx ->"q_ Igalx0 / 2 "_ + if3 Igbl / 4O)0 (83)

Finally, in order to calculate the power consumption Pw
nw

versus time t, Eq. (65), we require the quantities _ I _lwil aIId II
i=l

Hww I12.From Eq. (82a),

nw

Y. I l_Iwi I = 2.449 T x (84a)
i=l

which determines the intercept of the Pw versus t curve at t = 0.

The slope of this curve is proportional to the norm II t_tww II2
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which, for equal torque requirement, is obtained from Eq. (74)

by inserting Crxy = 1 = ayz:

II _ww 112= 2.25 Tx 2 (84b)

The indexes (84a) and (84b) should be kept as small as

consistent with performance specifications.

Wheels Contributing to All Three Axes

In Fig. 12, when Y = 45°, each of the four wheels

conmbutes equally to the roll and yaw axes, as evident from Eq.

(69). Reference 6 has examined this configuration to some

depth. For y = 45 °, for equal torque requirements (Tx = Ty = Tz)

and optimum cant angle (81), Eq. (69) yields

I_Iww = T x [ - _/4 N_/4 3 "_/4 ",/-3/4 ]T (85a)

The element with maximum absolute value yields the desired

torque capacity of the wheel:

lTtw,mx _>3 "_ Tax/4 = 1.3 Tx (85b)

Comparing (85b) with (82), we conclude that, to produce a

torque of magnitude Tx about each of the three axes, the

reaction wheels corresponding to y = 45 ° configuration must

have 24.4% higher torque capacity than the wheels

corresponding to Y = 0° configuration. This is not surprising

because for Y = 45°, the wheel's torque capacity is dispersed

along all three axes, whereas in the case Y = 0°, it is distributed

along roll and pitch or yaw and pitch only.
Following the derivation of the wheel momentum capacity,

Eq. (83), the desired capacity for the configuration at hand is

Hw.mx -> 43 ( Igal xO + Igbl / coo )/4 (86)

where the optimum cant angle (81) has been used. Comparing

(86) with (83), we find that Hw,mx now (y = 45 °) is smaller

than before (T = 0°), in contrast with the torque capacity
conclusion drawn above. The reason of course is that the secular

momentum tOga is either about the roll-axis or yaw-axis, not

both, whereas the torque capacity Tx is desired about both roll

and yaw axes.

The two indexes of the power consumption are

calculated with the aid of (85a) and (74):

4

I I_Iwi I = 2.598 Tx

i=l

(87a)

, _ww ,2 = 2.25 Xx2 (87b)

Comparing (87a) with (84a) and (87b) with (84b), we conclude

that, for producing equal torque about the three spacecraft axes,

and for the same initial wheel speed, the Y = 45° wheel-

configuration begins with a slightly higher power consumption

and increases at the same rate as the V = 90° or 0 ° configuration.

One-Wheel Failure

For the four-wheel configuration shown in Fig. 12, we are

usually interested in either "/= 45 ° or 90 ° (V = 0° or 90 ° are

effectively the same). And for these values, because all wheels

are arranged symmetrically, failure of any wheel has the same

consequences as the failure of any other. Therefore, to facilitate

analysis, we arbitrarily assume the failure of wheel-3, and in
that case the 3x4 transformation matrix -C,,.bw, Eq. (66),

condenses to a 3x3 matrix .C,.bw.3, formed by deleting the third

column of Cbw.The inverse Cbw,3 -1 of Cbw,3 is found and

then used to determine the torque vector l_Iww, following (61):

-T xSy/crl - Tzcy/cq 1
• [ Tx(sY- cT)/2Crl + Ty/2Srl + Tz(s Y + cT)/2cq

kl /

_ww=| 0 (wheel-3 failed)

LTx(sT+cy)/2crl +Ty/2SrI-Tz(sT-cy)/2cq -J

(88)

The wheel momentum vector Hww is determined likewise. For

one-wheel failure case, the cant angle is not re-optimized

because the cant angle of the wheels, once installed, is not

changeable in the flight.

Maximum Torque and Momentum Capacity When 7 = 90 °

For T = 90°, and for the optimum cant angle (81), Eq.

(88) yields

I_tww = Tx [-1.225 2.091 0 0.866] T (89a)

which in turn yields the required torque capacity of the wheel as

_w.rnx -> 2.091 Tx (89b)

This is twice the requtred torque capacity in the no-failure case,

Eq. (82b).
Following the derivation of the momentum capacity Eq.

(83) for the no-failure case, the momentum capacity for one-

wheel failure case is:

43 Ig l  o/2q2 + 4-3 tgbt/2 o0

0 (wheel-3 failed)

43 Igal 1:0/2"_-2 + "_-3 Igb I/20)0

(90)

Depending upon the relative magnitudes of ga and gb, either

wheel-1 or wheel-2 will yield the required momentum capacity

(wheel--4 will yield the same capacity as the wheel-2).

Regarding the two indexes of power consumption, Eq. (89a)

furnishes
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4
II_lwiI= 4.182 T x (91a)

i=I

II I_Iww II2 = 6.62 Tx 2 (91b)

which may be compared with the no-failure results, Eqs. (87).

Maximum Torque and Momentum Capacity When y = 45 °

For equal torque requirements about the roll, pitch, and yaw

axes (T x = Ty = Tz), and for the optimum cant angle 11" =

35.26, the desired torque capacity of each wheel is

Hw,mx _-21.732 T x (92)

juxtaposed to the no-failure size (85b). By comparing the size

(92) with the size (89b), the advantage of y = 45 ° configuration

over y = 0 ° or 90 ° configuration emerges: when one wheel fails,

the y = 45 ° configuration can control the spacecraft with the

wheels of smaller torque capacity than the 7 = 0° or 90 °
configuration can.The two indexes of power consumption are:

4

_". I l_Iwi I =3 "_f3 T x = 5.196 Tx

i=l

IIfiww II2 = 9 Tx 2 (93b)

Comparing (93) with (91), a disadvantage of the _ = 45 °

configuration is also unveiled: its power consumption is

significantly greater than that of the y = 90 ° configuration.

Finally, the desired momentum capacity is

Hw,mx = _ ( Igal x0 + Igbl / o)0)/2 (94)

Compared with its no-failure counterpart, Eq. (86), the desired

momentum capacity is now twice.

Reference 6 may he reviewed for a different aspect regarding

the selection of cant angle for the configuration at hand.

Six-Wheel Pyramid Configurations
Two-Cant-Angle Configuration

One such configuration is shown in Fig. 15 where the

wheels are arranged symmetrically (y = 60°), wheels 2 and 5

controlling roll and pitch axes, and wheels 1, 3, 4, and 6

controlling all three axes. Because of this fundamental difference

between the two subsets of wheels, the cant angle 112 of the

former subset is allowed to be, in general, different from the

cant angle T! 1 of the latter subset. This freedom permits a

greater economy in power consumption, if desired, and allows

the reaction wheels to be of smaller torque and momentum

capacity than the one-cant-angle configuration does.

To determine the optimum cant angles _1" and r12*, define

ci = cos 11i si = sin rli (i = 1,2) (95)

The transformation matrix Cbw (3x6) is

C_.bw m

I c I/2 c 2 c I/'2 --ci/2

,_r._s 1 -s 2 -s 1 -s 1
q/2 o -43q/2 -q'3c]/2

_s2 -s 1

0 :3Cl/

(96)

where, from the second and fifth column, it is apparent that the

wheels 2 and 5 do not control the yaw axis, while the remaining

four wheels control all axes. The pseudo-inverse matrix ff_w* is

determined using the definition (59):

-- ,. cI/2•

c2

ci/2

_ b,wt = < _'/(c l 2 + 2c22) 'c
-c1/2

-c 2

-- -_cl/2 ._

e. --_11•

>/(4a 12 +2s22 )

-i 1

-42

and the Euclidean norm of the vector I_lww is

(97)

II l_Iww 112= Tx2/(Cl 2 + 2c22) +

Ty2/2(2s12 + s22) + Tz2/3c 12 (98)

which is minimized by the optimum angles 111" and r12*

def'med by

s2_] *= (T x+Ty-Tz)/(Tx+Ty+Tz),

c2"ql * = 2Tz/(T x + Ty + Tz) (99a)

s2"q2 *= {2(Tz-Tx)+Ty}/(T x+Ty+Tz),

c2"q2 * = (3Tx - Tz) / (Tx + Ty + Tz) (99b)

Fig. 16 portrays the optimum angles r11" and 1"12" for specified

torque ratios Oxz and Oyz. Substituting the optimum
trigonometric functions in Eq.(98), the minimum value of the

norm II fiww 112is found to be

II I_Iww II2 = (T x + Ty + Tz) 2/6 (100)

The three torque components Tx, Ty, T z are independent, and

once specified, they are produced by the six I_Iwi (i= 1..... 6),

given by Eq. (61). Clearly, these six quantifies are constrained

by three relations which are obtained from the expanded version

of Eq. (76). Due to these constraints,

II I_ww I12 < 6 l_lw.mx 2 (101)

analogous to the inequality (78) for the 4-wheel configurations.
Combining (101) with (100), we obtain

(T x + Ty + Tz) / 6 < I_Iw,mx 002)
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Fig. 15. Six-wheel hexagonal configuration

1_2" =

_s 9080 70 60 50 45 40 30 20

"- _
t

-- \
"_-_ _ 64 Cryz = 2(O'xz'-l)

I]1" = 0 _

(Gyz = - _xz+1 )

3 4 5 6

Fig. 16. Dependence of optimum cant angles _1" and r12* on

the torque ratios axz and ay z

which states that the sum of the maximum torques that can be
produced about the three spacecraft axes must be less than the
total torque capacity of the wheels---the cant angles being the
underlying reason. For equal torque requirements (Tx = Ty =
Tz), the inequality (102) reduces to

l_Iw,mx > Tx/2 (103)

which may be compared with (80). It is intuitively clear that,
instead of arranging six wheels as shown in Fig. I5, if they
were arranged two wheels per axis, then for equal torque
requirement about the three axes each wheel's torque capacity
must satisfy

I_lw,mx _> Tx/2 (104)

instead of (103).

When the maximum required torque components Tx, Ty, Tz
are all equal, Eqs. (99) yield Eq. (81)

Snl* = 1/_ = srl2*; Crll* = "_/'_ = crl2*;

r11" = 35.26 ° = 1"12" (105)

The two cant angles, therefore, coalesce and indeed they become
the same as that for the 4-wheel configurations. The desired
maximum torque capacity of the wheel is then found to be

I_lw,mx _> 0.846 Tx (106)

which is smaller than the torque capacity (82b) or (85b) for 4-
wheel configurations for the same torque requirements about the
s[_t ale.s.

Regarding the power consumption, the Euclidean norm
(100) yields

II ._ww II2 = 1.5 Wx2 (107)

Comparing (107) with (84h) and (87b), we observe that for the
same Tx about all three axes, the power consumption of the 6-
wheel configm'adon increases at a smaller rate than that of the
4-wheel configuration. Finally,

6

Z I I_IwiI = 2,509 Tx (108)
i=l

which is within the two values (84a) and (87a) for the two 4-
wheel configurations.

One-Cant-Angle Configuration
A hexagonal wheel assembly with two different cant angles

might be difficult to install in a spacecraft bus; so we now
optimize a hexagonal configuration with one cant angle. The
pseudo-inverse matrix, Eq. (97), simplifies and Eq. (61) yields
the Euclidean norm

IIl_Iww II2 = (Tx 2 + Tz 2) / 3c2_ + Ty2/6s2_ (109)

where the subscript 1 of 111 is dropped because now there is
only one cant angle. Minimization of this norm leads to,
surprisingly, the condition (72) for the 4-wheel configurations.
The minimum value of the norm (109) is

II_w. ll2= [Ty+ _/2 (Tx 2 + Tz 2) ]2/6 (110)
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Fig. l 7. A Three-Wheel Pyramid Configuration

which is two-thirds of the value in (74) for the 4-wheel
configuration. Also, because of the inequality (101), we arrive
at

l_w,mx > [N](Tx 2 + Tz2)/18 + Ty/6] (111)

which is different form (102) but, for equal torque requirement,
reduces to (103).

The one-wheel failure analysis, considered above for the
four-wheel configurations, becomes unwieldy because of the
5x3 size of the reduced matrix .C,.bw.Therefore, pertinent results
such as wheel torque capacity and power consumption are
obtained with the aid of a computer and summarized later in
Table 3.

Three-Wheel Pyramid Configuration
When wheel redundancy is not warranted, when for reasons

of cost and weight the number of wheels must be bare
minimum, and when the torque requirements about the three
axes are not necessarily equal, the three-wheel pyramid
configuration shown in Fig. 17 might be an ideal choice. For
this arrangement, the three wheel angular momentums can be
expressed in spacecraft axes as follows:

(112)

wherein the 3x3 transformation matrix is ._-bw. Because now

there is no redundancy, the pseudo-inverse matrix .G,.bwt

becomes the regular inverse matrix _,_bw-1. After determining

Cbw -1 and substituting that in Eq. (61), the vector _[ww in

terms of the required torque components Tx, Ty, Tz turns out to
be

['2Tx/3C_ + Ty/3Srl 1
I_,, = [-Tx/3Crl + Ty/3S_ + Tz/3C- q (113)Jk-Tx/3cr I + Ty/3Srl - Tz/3C. q

For minimization of power consumption, we amve at the
followin Euclidean norm.

II_ww 112= 2 (Tx 2 + Tz 2) / 3c2_ + Ty2/3s271 (114)

which is four-thirds of the norm (71) for 4-wheel configurations
and six-thirds (twice) of the norm (109) for 6-wheel
configuration, implying that if they all begin from zero wheel
speed, the 3-wheel configuration will consume greater power in
the stated ratio. For example, for equal torque requirements (T, =

Ty = Tz), while the minimum value of the 4-wheel norm is
2.25, that of the 3-wheel norm is 3.0, which is, incidentally,
the same as that for the three orthogonal wheels one per axis.
Moreover, if the cant angle is not set to be the optimum (rl #
rl*), the three-wheel pyramid configuration will use more power
than the one-per-axis configuration.Next, the norm (114) yields
the same optimum angle as one for the 4- and 6-wheel
configurations, Eq. (72). For this optimum angle, the following
minimum value of the norm emerges:

Ill:lwwll 2 min =[Ty+_/2(Tx2+T z2) ]2/3
(115)

which is twice the value (110) for the 6-wheel configuration and
four-thirds of the value (71) for the 4-wheel configuration.

The required torque capacity of the wheels for equal torque
requirements about roll, pitch, and yaw axes is found to be

I:Iw,mx > 1.39 Tx (116)

As a check, note that the norm of H__'wwfor three-wheel

configuration is indeed

II_ww 112= 3Tx 2 (117)

equal to that for a one-wheel-per-axis configuration; but the
power consumption of each wheel would be quite different from
that for the one-wheel-per-axis configuration.

Overall Comparison of Six Configurations
When the torque requirements about the roll, pitch, and yaw

axes are not the same, the wheels of different torque capacities
along different axes might be selected; but from the standpoint
of reliability and cost, that is usually not preferred. Perhaps
a more attractive choice is a six-wheel configuration with
identical wheels, the cant angle selected according to the desired
torque ratios. For equal torque requirements, the optimum cant
angle is _* = 35.26 °, and the associated wheel torque capacity
for the required torque Tmx must be at least 0.846 Tmx lEq.
(106)I--greater than 0.5 Tmz for the two-wheel-per-axis

arrangement. The two power consumption indexes in the case of
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no wheel failure shown in the second row of Table 3 restate

Eqs. (107) and (108). When the wheel in the roll-pitch plane

fails, the torque capacity of the remaining five wheels must be
boosted to at least 1.311 1"=, to produce the required torque T=,

about the spacecraft axes. This result is obtained by failing the

wheels 1,2 ..... 6, one at a time, and then determining the

absolute maximum value of the wheel torque in each case for

generating Tin, torque about each of the three spacecraft axes.

The maximum Euclidean norm and the associated absolute sum
6

_lI_Iwi I are also shown in Table 3. Comparing the 2-wheel-per-

i=l

axis and 6-wheel hexagon configurations, we find that for equal

torque requirements, the latter (hexagon) configuration requires

wheels of larger torque capacity and it consumes more power--
and therefore not as favored as--the former configuration.

However, when the roll, pitch, and yaw torque requirements are

not the same, the conclusion will possibly swing in favor of

the hexagon configuration.

Although six-wheel configurations provide substantial

reliability and three-wheel redundancy, they could be expensive,
so four-wheel configurations may be desirable instead, which

provide a one-wheel redundancy. Two such configurations---one

with pyramid base parallel to roll-yaw axes and the other with

the base at 45°--are discussed above. For the purpose of

comparison , call these configurations parallel- and 45 °-

configuration, respectively. Under no-failure case, the 45 °-

configuration requires wheels of larger torque capacity than the

parallel-configuration, but in the event of a one wheel failure,
the situation reverses. On the other hand, from the power

consumption viewpoint, under no-failure case, the 45 °-

configuration uses only slightly more power than the parallel-

configuration, but the failure of a wheel aggravates this

difference. Because the final design is usually based on one-

wheel failure performance, we infer that if power is relatively

abundant and the wheel torque capacity is at a premium, the 45 °-

configuration should be selected. On the other hand, if power is

expensive and the cost of the wheels depends only weakly on its

torque capacity, the parallel configuration will then be a more

prudent choice.
When wheel redundancy is not warranted, only three

wheels---necessary and sufficient for spacecraft control--can be

employed. If the torque and momentum requirements about the

three axes are identical, the control engineer may opt for one-

wheel-per-axis configuration. But in the case of dissimilar

requirements, 3-wheel pyramid, with the cant angle suitable to

the desired torque and momentum ratios, might be preferred.

Table 3 compares these two 3-wheel configurations for equal

torque requirements, and shows that the pyramid configuration

requires wheels of 39% bigger torque capacity, although its

power consumption may be slightly less than or equal to that of

the one-wheel-per-axis configuration.

Fig. 18 sums up the comparison between the power

consumption of the six configurations considered in Table 3 for

equal torque requirements. In particular, the Euclidean norm of

the vector "Hww versus the cant angle for each configuration for

the no-wheel-failure case are shown in the figure. As noted

before, the cant angle 1"1" (rl* = 35.26 °) for minimum power

consumption is the same for 3-, 4-, or 6-wheel pyramid

configurations.

Concluding Remarks

Among a variety of disturbance torque that act on a

space-craft, only solar radiation is considered in the preceding.

For clarity, the torque expressions are further specialized by

assuming that the vehicle mass center always remains in the

pitch-yaw plane. Although this was true for the spacecraft that

led to this study, the roll component of the vector from

instantaneous vehicle mass center to the geometric center of the

array or bus may not be zero for other spacecraft. Also, while

solar torque vanes at orbit frequency, aerodynamic torque, for

Table 3. Comparison of Six Configurations for Equal Torque Requirements about Roll, Pitch. and Yaw Axes.
Based on Minimum Power Consumption

REQUIRED CONTROL TORQUE: Tcx= Icy= Tcz= Tmx

CONFIGURATION

2 Wheel/Axis

6-WheelHemgon

(r_)
4-Wheel Pyram_.

Base Eclges II to

A_es(%=4)

4-WheelPyramid,
Ed_s at _0

to X.Z Axes (r_v=4}

3-Wheel Pyramid

3-Oahogonal

OPTIMUM

ANGLE

n"(peg)

35.26

35.26

35.26

35.26

NO-FAILURE

aoqu_
Tol_ue

C_ac_y

TotalPower

Comumplion Rate

nw

2
'-I

TotalPower Interce_

Due toNonzero l_ial

WheeJ,Speed
r4v-1

2 lhil/Tmx

;,,-1

3.0

0.5 15 3.0

0.846 1.5 2.509

1045 2.25 2.449

13 2.25 2.598

130 3.0 2.8

I 3.0

WORST I-WHEEL FAILURE

TORQUE

FaJed Wheel RequNcl To_lue
Producing Capacity

# Max •

To,'_ue Hw'mx/l'rra

One 1.0

#5 # 4 1.311

#1 # 2 2.091

#2 #1

# 3 #1, 2, 4 1.732

POWER

FaJed

V_

#

ArV
One

#4

#1,2

#3

TotalPower

Consumption

Rate

nw

hi 2/Tmx 2

TotalPower Inlercl_I
Due t0 Nonzero In_aJ

w_etSpeed
nw-1

£ Ihi',/Tmx

_,,1

2.0 3

2.933 3.073

662 4.182

90 5.196

FAILURE DISALLOWED
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Fig. 18. Reaction wheel configurations trade-offs for equal roll,
pitch, and yaw torque requirements

instance, may vary at twice the orbit frequency and a yaw bias
torque might arise. For these different circumstances, the torque
and momentum expressions have to be derived afresh to size the
wheels. Regarding the wheel configurations, besides the two
four-wheel configurations considered in the paper, there are two
more: 1) NASA's standard four-wheel arrangement of one wheel
along each body-axis and the fourth wheel inclined equally to all
three axes; and 2) all four wheels canted equally to the pitch axis
and each controlling roll and yaw as well, but more inclined to
roll-axis than to yaw-axis or the converse depending on the roll
and yaw unequal torque requirements. In the first arrangement,
the cant angle of the fourth wheel is already determined, only
the wheels' torque and momentum capacity need to be sized for
one-wheel failure scenario. In contrast, in the second

arrangement, two angles must be optimized to minimize power
consumption for given torque and momentum requirements: the
cant angle rI with the roll-yaw plane and the angle T with the
roll axis for all four wheels. For these optimum angles, the
torque and momentum capacity of the wheels will be sized
according to one-wheel failure condition, as shown in the paper.
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